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We study the phase behavior of a nematic liquid crystal confined between a flat substrate with strong
anchoring and a patterned substrate whose structure and local anchoring strength we vary. By first evaluating
an effective surface free-energy function characterizing the patterned substrate, we derive an expression for the
effective free energy of the confined nematic liquid crystal. Then we determine phase diagrams involving a
homogeneous state in which the nematic director is almost uniform and a hybrid aligned nematic state in which
the orientation of the director varies through the cell. Direct minimizations of the free-energy functional were
performed in order to test the predictions of the effective free-energy method. We find remarkably good
agreement between the phase boundaries calculated from the two approaches. In addition, the effective free-
energy method allows one to determine the energy barriers between two states in a bistable nematic device.
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I. INTRODUCTION

The interest in anchoring phenomena and phenomena in
confined nematic liquid crystals has largely been driven by
their potential use in liquid crystal display devices. The
twisted nematic liquid crystal cell serves as an example. It
consists of a nematic liquid crystal confined between two
parallel walls, both providing homogeneous planar anchoring
but with mutually perpendicular easy directions. In this case
the orientation of the nematic director is tuned by the appli-
cation of an external electric or magnetic field. A precise
control of the surface alignment extending over large areas is
decisive for the functioning of such devices.

Most studies have focused on nematic liquid crystals in
contact with laterally uniform substrates. On the other hand,
substrate inhomogeneities arise rather naturally as a result of
surface treatments such as rubbing. Thus the nematic texture
near the surface is in fact nonuniform. This nonuniformity,
however, is smeared out beyond a decay length proportional
to the periodicity of the surface pattern. Very often the thick-
ness of the nonuniform surface layer is considerably smaller
than both the wavelength of visible light and the thickness of
the nematic cell, i.e., the distance between the two confining
parallel walls. Hence, optical properties of the nematic liquid
crystal confined between such substrates correspond to those
resulting from effective, uniform substrates.

More recent developments have demonstrated that sur-
faces patterned with a large periodicity of some micrometers
are of considerable interest from a technological point of
view �see, e.g., Ref. �1� and references therein�. A new gen-
eration of electro-optical devices relies on nematic liquid
crystals with patterned orientation of the nematic director
over small areas which can be achieved by chemically pat-
terning the confining surfaces. For example, to produce flat-
panel displays with wide viewing angles, one can use pixels
that are divided into subpixels, where each subpixel is de-
fined by a different orientation of the nematic director, which
is induced by the surface structure and subsequently tuned by
the electric field. In addition to the technological relevance,
nematic liquid crystals in contact with nonuniform substrates
provide the opportunity to study basic phenomena such as

effective elastic forces between the substrates and phase tran-
sitions between various competing nematic textures �see,
e.g., Ref. �2� and references therein�.

Whereas the influence of homogeneous confining sub-
strates on nematic liquid crystals is now well understood, the
phase behavior of nematic liquid crystals in contact with
chemically or geometrically patterned substrates is still de-
bated. One might suppose that theoretical calculations based
on continuum theories should resolve the properties of nem-
atic liquid crystals in contact with patterned substrates
�3–33�. However, such calculations are numerically demand-
ing because two- or three-dimensional grids have to be used
because of the broken symmetry due to the surface pattern.
Moreover, it is very challenging to determine metastable
states and energy barriers between them which are important
for the understanding of bistable nematic devices �34–57�. In
the present paper we adopt a different strategy which takes
the advantage of the finite decay length characterizing the
influence of the surface pattern on the nematic liquid crystal
in the direction perpendicular to the substrate. For the given
surface pattern, we define an effective anchoring energy by
looking at the response of the nematic liquid crystal to varia-
tions of the director at a distance comparable to the decay
length. In the presence of geometrical pattern this distance is
measured from the average position of the surface profile
�z0�. The effective anchoring energy can be considered as a
function of a suitably defined average director orientation at
z= �z0�. In other words, we consider a hypothetical uniform
substrate placed at z= �z0� which has the same effect on the
bulk nematic liquid crystal as the actual patterned substrate,
although the director fields in the surface regions are differ-
ent in both cases. Then it is straightforward to define the
effective free energy for the cell with a patterned substrate
and of arbitrary thickness, larger than the decay length, in the
same manner as in the case of two uniform substrates. We
find remarkably good agreement between the phase diagrams
of various systems calculated using this effective free-energy
function on the one hand and the original free-energy func-
tional on the other hand.

PHYSICAL REVIEW E 76, 051701 �2007�

1539-3755/2007/76�5�/051701�9� ©2007 The American Physical Society051701-1

http://dx.doi.org/10.1103/PhysRevE.76.051701


II. EFFECTIVE FREE ENERGY FUNCTION

A. Continuum theory

The continuum theory for liquid crystals has its origin
dating back to at least the work of Oseen �58� and Zocher
�59�. This early version of the continuum theory for nematic
liquid crystals played an important role for the further devel-
opment of the static theory and its more direct formulation
by Frank �60�. The Frank theory is formulated in terms of the
so-called nematic director n̂= n̂�r�, �n̂ � =1, and its possible
spatial distortions. The nematic director describes the direc-
tion of the locally averaged molecular alignment in liquid
crystals. In a nematic liquid crystal the centers of mass of the
liquid crystal molecules do not exhibit long-ranged order.
The molecules can translate freely while being aligned, on
average, parallel to one another and to the nematic director.
It is known that if an initially uniform nematic liquid crystal
is distorted by external forces, it relaxes back to the uniform
state after the disturbing influence is switched off, signaling
that the uniform configuration represents a thermodynami-
cally stable state. Therefore it is assumed that there is a cost
in free energy associated with elastic distortions of the nem-
atic director of the form

Felas�n̂�r�� =
1

2
�

V

d3r�K11�� · n̂�2 + K22�n̂ · �� � n̂��2

+ K33�n̂ � �� � n̂��2� , �1�

where V is the volume accessible to the nematic liquid crys-
tal and K11, K22, and K33 are elastic constants associated with
splay, twist, and bend distortions, respectively. The elastic
constants depend on temperature and are commonly of the
order 10−12 to 10−11 N. Sometimes, for example, when the
relative values of the elastic constants are unknown or when
the resulting Euler-Lagrange equations are complicated, the
one-constant approximation K=K11=K22=K33 is made. In
this case the elastic free-energy functional reduces to

Felas�n̂�r�� =
K

2
�

V

d3r��n̂�2. �2�

In the presence of surfaces, the bulk free energy Fb=Felas
must be supplemented by the surface free energy Fs such that
the total free energy is given by F=Fb+Fs. In the corre-
sponding equilibrium Euler-Lagrange equations �F /�n̂=0,
Fs leads to appropriate boundary conditions. The description
of the nematic director alignment at the surfaces forming the
boundaries is called anchoring. In addition to the so-called
free boundary condition where there is no anchoring, one
considers weak and strong anchoring. If there are no anchor-
ing conditions imposed on n̂ at the boundary, the bulk free
energy Fb is minimized using standard techniques of the cal-
culus of variations. In the case of strong anchoring it is also
sufficient to minimize the bulk free energy but subject to n̂
taking prescribed fixed values at the boundary. In the case of
weak anchoring the total free energy F, which includes the
surface free energy Fs, has to be minimized. The most com-
monly used expression for the surface free energy is of the
form proposed by Rapini and Papoular in Ref. �61�:

Fs�n̂�r�� =
1

2
�

S

d2rw�r��n̂ · �̂�2. �3�

The integral runs over the boundary and w=w�r� is the cor-
responding anchoring strength that characterizes the surface.
The local unit vector perpendicular to the surface is denoted
as �̂. For negative w, this contribution favors an orientation
of the molecules perpendicular to the surface, while positive
w favors degenerate planar orientations at the surface. The
absolute value of the anchoring strength is commonly of the
order 10−6 to 10−2 N/m.

B. The model

Here we consider a nematic liquid crystal confined be-
tween a patterned substrate at z=0 and a flat substrate at z
=D, where the z axis is normal to the flat substrate. As Figs.
1�a�, 1�c�, and 1�d� illustrate, the lower substrate is charac-
terized by geometrical and/or chemical patterns of periodic-
ity p along the x axis. Moreover, the system is translationally
invariant in the y direction. Within the one-constant approxi-
mation �Eq. �2�� the total free-energy functional is given by
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FIG. 1. �a� The system under consideration consists of a nematic
liquid crystal confined between two substrates at a mean distance D.
The upper flat substrate induces strong anchoring, i.e., ��x ,z=D�
=�D, while the lower substrate is characterized by a surface pattern
of period p in x direction. The system is translationally invariant in
y direction perpendicular to the plane of the figure. In �a� the lower
sinusoidally grating surface �groove depth A� is endowed with an
alternating stripe pattern of locally homeotropic anchoring �white
bars� and homogeneous planar anchoring �black bars�. The period
of the chemical pattern is half the period of the surface grating p. In
�c� and �d� a pure geometrically structured lower substrate and pure
chemically patterned lower substrate, respectively, are shown. The
anchoring direction at the substrates is schematically represented by
black rods. Quantitatively reliable predictions of the phase behavior
of a nematic liquid crystal confined between two substrates at an
arbitrary mean distance D in �a� can be achieved if the effective
free energy function �Eqs. �6�–�8�� is analyzed. To this end, the
free-energy functional of the nematic liquid crystal confined be-
tween two substrates at a single and rather small mean distance
D*� p in �b� has to be minimized, as is discussed in the main text.
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F���x,z�;�D,D� =
KL

2
�

0

p

dx�
z0�x�

D

dz����x,z��2

+ Fs���x,z0�x��� , �4�

where L is the extension of the system in y direction, z0�x� is
the surface profile of the patterned substrate, and n̂
= �sin � ,0 ,cos ��. At the upper surface strong anchoring
��x ,z=D�=�D is imposed. Twist is not considered, i.e., K22

=0. Of course, the analysis can be straightforwardly ex-
tended to the case of different splay and bend constants K11
and K33, respectively, but this aspect of the problem is im-
portant only if the analysis is supposed to yield quantitative
results for a specific nematic liquid crystal. The surface con-
tribution Fs���x ,z0�x��� includes the anchoring energy for
which the Rapini-Papoular form �Eq. �3�� is adopted:

Fs���x,z0�x��� =
L

2
�

0

p

dxw�x�

�
�− sin��0�x��z0��x� + cos��0�x���2

	1 + �z0��x��2
, �5�

where �0�x�
��x ,z=z0�x��. Equations �4� and �5� together
with the boundary condition for the nematic director at the
upper surface completely specify the free-energy functional
for the system under consideration. The Euler-Lagrange
equations resulting from the stationary conditions of the total
free energy with respect to the nematic director field can be
solved numerically on a sufficiently fine two-dimensional
grid using an iterative method. In order to obtain both stable
and metastable configurations, different types of initial con-
figurations are used. However, due to the pattern of the lower
surface the determination of the director field and the phase
diagram turns out to be a challenging numerical problem in
particular in the case of large cell widths D. Moreover, the
energy barrier between two metastable states cannot be de-
termined this way.

C. Effective free-energy function

Here we map the free-energy functional F���x ,z� ;�D ,D�
�Eq. �4�� of a nematic liquid crystal cell with arbitrary width
D and arbitrary anchoring angle �D at the upper surface �see
Fig. 1�a�� onto the effective free-energy function

F�ef f���̃0,�D,D� =
KLp

2D
��D − �̃0�2 + Fs

�ef f���̃0� , �6�

where the average surface director orientation �̃0 �62� at the
lower patterned surface is given by

�̃0��D*
,D*� = �D*

−
D*

KLp

�

��D*

�F��D*
,D*��min. �7�

The effective surface free-energy function Fs
�ef f� characteriz-

ing the anchoring energy at the patterned surface can be writ-
ten as

Fs
�ef f���̃0��D*

,D*�,D*� = �F��D*
,D*��min −

KLp

2D*

�„�D*
− �̃0��D*

,D*�…2. �8�

In order to calculate �̃0 and Fs
�ef f� explicitly, we first deter-

mine numerically the minimum of the free energy
F��D*

,D*��min of the nematic liquid crystal cell for a single
and rather small value D=D*� p and arbitrary anchoring
angle �D*

at the upper surface �see Fig. 1�b��. Thereafter the
phase behavior, energy barriers between metastable states,
and effective anchoring angles for the system of interest �Fig.
1�a�� can be obtained for arbitrary values of D and �D from

F�ef f���̃0 ,�D ,D� as a function of the single variable �̃0. Such
a calculation is considerably less challenging than minimiz-
ing the original free-energy functional F���x ,z� ;�D ,D� with
respect to ��x ,z� on a two-dimensional �x ,z� grid. However,
the effective free-energy method is applicable only if Eq. �7�
can be inverted in order to obtain �D*

��̃0� which is needed as
input into Eq. �8�. The condition for this inversion follows
from Eq. �7�:

�1 −
D*

KLp

�2

��D*

2 �F��D*
,D*��min�2

� 0. �9�

Moreover, Fs
�ef f���̃0��D*

,D*� ,D*� is practically independent
of the cell width D* provided D*� p implying that the inter-
facial region above the lower substrate does not extend to the
upper substrate.

Before studying the nematic liquid crystal in contact with
the patterned substrates shown in Fig. 1 it is instructive to
analyze first the nematic liquid crystal confined between two
homogeneous flat substrates at a distance D. The upper sur-
face induces strong anchoring, i.e., ��z=D�=�D. The free-
energy functional defined in Eq. �4� follows as

F���z�;�D,D� =
KLp

2
�

0

D

dzd��z�
dz

�2

+ Fs��0� . �10�

The solution of the Euler-Lagrange equation �z
2��z�=0 sub-

ject to the boundary condition at the upper surface ��z=D�
=�D interpolates linearly between the top and bottom sur-
faces:

��z� = �D −
1

D
�D − z���D − �0� , �11�

where ��z=0�=�0 follows from the boundary condition at
the lower surface. With this solution of the Euler-Lagrange
equation the minimized free-energy function reads

F���D*
,D*��min =

KLp

2D*
��D*

− �0�2 + Fs��0� . �12�

It follows directly from Eqs. �6�–�8� that �̃0=�0, Fs
�ef f�=Fs,

and
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F�ef f���0;�D,D� =
KLp

2D
��D − �0�2 + Fs��0� . �13�

Hence in the case of homogeneous confining substrates the
effective free-energy function �Eq. �13�� agrees exactly with
the minimized free-energy function of the original system
�Eq. �12��.

III. APPLICATIONS

A. Geometrically and chemically patterned substrates

In the previous section we have shown that we can de-
scribe a nematic liquid crystal confined between two homo-
geneous substrates by the effective free-energy function �Eq.
�6��. In this subsection we apply this approach to the particu-
lar case of a nematic liquid crystal confined between a
chemically patterned sinusoidal surface and a flat substrate
with strong homeotropic anchoring �see Fig. 1�a��. The
surface profile of the grating surface is given by z0�x�
=A sin�qx�, where A is the groove depth and p=2� /q is the
period. As Fig. 1�a� illustrates, the surface exhibits a pattern
consisting of alternating stripes with locally homeotropic and
homogeneous planar anchoring. The projection of the widths
of the stripes onto the x axis is p /4 and the anchoring
strength is specified by a periodic step function: w�x�=−wH

and wP for values of x on the homeotropic and planar stripes,
respectively. Figure 2�a� displays F��D*

,D*= p��min �dashed

line� and Fs
�ef f���̃0 ,D*= p� �solid line� for pwH /K=1,

pwP /K=2.5, and A / p=0.09. The shapes of F��D*
,D*

= p��min as a function of �D*
and Fs

�ef f���̃0 ,D*= p� as a func-

tion of �̃0 are rather similar because �̃0��D*
�see Eq. �8�� for

this set of model parameters. Figure 2�b� displays the phase
diagram plotted as a function of the anchoring angle �D at
the upper substrate and the mean separation of the substrates
D. The calculations demonstrate the existence of two �stable
or metastable� nematic director configurations: the homeo-
tropic �H� phase, in which the director field is almost uni-
form and parallel to the anchoring direction imposed at the
upper surface, i.e., n̂H= �sin �D ,0 ,cos �D�, and the hybrid
aligned nematic �HAN� phase, in which the director field
varies from n̂H at the upper surface to nearly planar orienta-
tion through the cell. Note that there are two HAN textures:
HAN+ and HAN− corresponding to positive and negative av-
erage surface angles at the lower surface �see also Fig. 7
below�. For small anchoring angles �D the HAN phases are
stable provided the cell width is larger than Dcoex �more pre-
cisely, the HAN+ texture is stable for �D�0 while the HAN−
texture is stable for �D�0 and they coexist at �D=0�. For
smaller distances between the substrates D�Dcoex the HAN
phases are no longer stable because distortions of the director
field are too costly in the presence of the dominating strong
anchoring at the upper surface. The comparison of the phase
boundary of thermal equilibrium as obtained from the effec-
tive free-energy method �Eqs. �6�–�8�, and solid line in Fig.
2�b�� and the direct minimization of the underlying free-
energy functional �Eqs. �4� and �5�, and diamonds in Fig.
2�b�� demonstrates the reliability of the effective free-energy
method.

We note that the phase transition between the H and HAN
textures is first order despite the fact that the effective sur-
face free energy favors monostable planar anchoring, i.e.,

Fs
�ef f� exhibits only a minimum at �̃0=� /2 in the interval

�̃0� �0,� /2�. A first order phase transition in a nematic liq-
uid crystal device with a monostable anchoring condition on
a homogeneous lower substrate has been predicted for the
special case �D=0 in Refs. �46,48� using the empirical ex-
pression

Fs��0� =
w0

2
sin2�2�0� + w1 sin2��0� �14�

as input into Eq. �13�. For w1�2w0 this surface free energy
has two minima at �0=0 and �=� /2 in the interval �0
� �0,� /2�, and as such is bistable, while for w1�2w0, only
the minimum �0=0 exists, i.e., the surface is monostable. To

(a)
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FIG. 2. �a� The minimized free energy F��D*
,D*= p��min �dashed

line� and the effective surface free energy Fs
�ef f���̃0 ,D*= p� �solid

line� of a nematic liquid crystal confined between a flat surface with
strong anchoring and a chemically patterned sinusoidal surface with
groove depth A / p=0.09 �see Fig. 1�b��. L is the extension of the
cell in the invariant y direction, K is the isotropic elastic constant,
and the anchoring strength on the homeotropic stripes �white bars in
Fig. 1�b�� and planar anchoring stripes �black bars in Fig. 1�b�� are
pwH /K=1 and pwP /K=2.5, respectively. �b� Phase diagram of the
same system as a function of the anchoring angle at the upper flat
substrate �D and the cell width D �see Fig. 1�a��. The solid line
denotes first order phase transitions between a homeotropic �H� and
hybrid aligned nematic �HAN+ and HAN−� phases. At �D=0 and
D / p�5.8 there is a triple point where the HAN+, HAN−, and H
states coexist. The solid circle marks the critical point at Dcr / p
�3 and �D

�cr�� ±15°. The limits of metastability of the HAN+ �1�
and the H �2� state are denoted by the dot-dashed lines. The limit of
metastability of the H state for �D�0 and the HAN− state are not
shown for clarity. The lines and the solid circle follow from analyz-
ing the effective free-energy function �Eqs. �6�–�8�� while the dia-
monds represent the phase boundary of thermal equilibrium as ob-
tained from a direct minimization of the underlying free-energy
functional �Eqs. �4� and �5��.
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study the stability limit of the H phase we expand F�ef f���0�
in Eq. �13� around �0=0 up to sixth order:

F�ef f���0� � Fs�0� +
1

2
�KLp

D
+ Fs��0���0

2 +
1

4!
Fs

�4��0��0
4

+
1

6!
Fs

�6��0��0
6. �15�

The H phase corresponds to a local minimum of F�ef f���0� in
Eq. �13� if D�Dcr, where

Dcr = −
KLp

Fs��0�
. �16�

A standard bifurcation analysis reveals that the transition
from the H phase to the HAN phase can be either first order
or continuous. The transition is continuous if Fs

�4��0��0, first
order if Fs

�4��0��0, and Fs
�4��0�=0 corresponds to a tricritical

point. In the case of a first order phase transition the phase
boundary of thermal equilibrium is given by

KLp

Dtr
=

10„Fs
�4��0�…2

16Fs
�6��0�

− Fs��0� . �17�

We emphasize that the order of the phase transition depends
only on the surface free energy Fs��0� close to �0=0 for
�D=0. Therefore it is possible to have a first order phase
transition even with a monostable surface characterized by a
monotonic surface free energy such as the one shown in Fig.

2�a� for �̃0� �0,� /2� or the empirical equation �14� with
w1�2w0 as well as the more general expression �11�

Fs��0� = �
n=0

�

�an cos�2n�0� + bn sin�2n�0�� �18�

with appropriate parameters an and bn.
First order phase transitions between the H and HAN tex-

ture are of particular interest for bistable liquid crystal dis-
plays. In a bistable liquid crystal display the two molecular
configurations corresponding to light and dark states are lo-
cally stable in the thermodynamic space when the applied
voltage is removed �44,54�. Therefore, power is needed only
to switch from one stable state to another, in contrast to
monostable liquid crystal displays which require power to
switch and to maintain the light and the dark states.

We now turn our attention to the case that it is not pos-

sible to evaluate �D*
��̃0 ,D*� from �̃0��D*

,D*� �Eq. �7�� be-
cause the condition for this inversion is not satisfied �Eq.
�9��. To this end we have chosen the parameters pwH /K
=2.5, pwP /K=6, and A / p=0.09 for the system shown in Fig.
1�a�. Figure 3�a� displays F��D*

,D*= p��min �dashed line� and

Fs
�ef f���̃0 ,D*= p� �solid line� while the corresponding phase

diagram is shown in Fig. 3�b�. As is apparent from the solid
line in Fig. 3�a�, it is not possible to determine the effective

surface free-energy function for all values of �̃0 because the
upper flat substrate at D* is too far away from the lower
patterned substrate in order to induce all possible average

anchoring orientations �̃0. In other words, the anchoring en-

ergy at the patterned substrate is too large to be balanced by
the elastic energy for the chosen mean distance D* between
the substrates �see Fig. 1�b��. Nevertheless, Fig. 3�b� demon-
strates that even this partial information about the effective
surface free energy function can be used to calculate the
phase diagram for cell widths sufficiently larger than the
width at the critical point Dcr.

B. Purely geometrically structured substrates

In the last subsection we have shown that with a suitable
chemical and geometrical surface morphology on one of the
interior surfaces of a liquid crystal cell, two stable nematic
director configurations can be supported. The zenithally
bistable nematic devices that have been studied recently
�46–49� consist of a nematic liquid crystal confined between
a chemically homogeneous grating surface �see Fig. 1�c��
and a flat substrate with strong homeotropic anchoring. The
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FIG. 3. �a� The minimized free energy F��D*
,D*= p��min �dashed

line� and the effective surface free energy Fs
�ef f���̃0 ,D*= p� �solid

line� of a nematic liquid crystal confined between a flat surface with
strong anchoring and a chemically patterned sinusoidal surface with
groove depth A / p=0.09 �see Fig. 1�b��. The anchoring strength on
the homeotropic stripes and planar anchoring stripes are pwH /K
=2.5 and pwP /K=6, respectively. �b� Phase diagram of the same
system as a function of the anchoring angle at the upper flat sub-
strate �D and the cell width D �see Fig. 1�a��. The solid line denotes
the first order phase transition between a homogeneous �H� and
hybrid aligned nematic �HAN+� phase. The solid circle marks the
critical point at Dcr / p�0.4 and �D

�cr��29°. The limits of metasta-
bility of the HAN+ �1� and the H �2� state are denoted by the
dot-dashed lines. The lines follow from analyzing the effective free-
energy function �Eqs. �6�–�8�� while the diamonds and the solid
circle represent the phase boundary and a critical point as obtained
from a direct minimization of the underlying free-energy functional
�Eqs. �4� and �5��. For D	 p the phase transition as well as the
limits of metastability cannot be determined using the effective

free-energy function because Fs
�ef f���̃0� is not known in the region

close to its maximum. For clarity, only the phase diagram for posi-
tive �D is shown �c.f. Fig. 2�.
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profile of the asymmetric surface grating is given by

z0�x� = A sin�qx + h sin�qx�� , �19�

where A is the groove depth, p=2� /q the period, and h is the
“blazing” parameter describing the asymmetry of the surface
profile. Such a grating surface has been studied by Brown et
al. �15� who found a first order transition between the HAN

state, characterized by a low pretilt angle ��̃0�� /2�, and the

H state, characterized by a high pretilt angle ��̃0�0�. Strictly
speaking, the H state does not correspond to the homeotropic
texture �see Fig. 6�b� below�, but we keep the same notation
as in the previous section for consistency. Here we study
phase transitions of a nematic liquid crystal in contact with
the blazed surface in a more detail using the effective free-
energy method discussed in Sec. II C.

In Fig. 4�a� the minimized free energy F��D*
,D*= p��min

�dashed line� and the calculated effective surface free energy

Fs
�ef f���̃0 ,D*= p� �solid line� are shown for the anchoring

strength pwH /K=2 on the grating surface, the groove depth
A / p=0.27, and the blazing parameter h=0.2. The effective

surface free energy is asymmetric with respect to �̃0=0 be-
cause of the asymmetry of the grating surface. As a conse-
quence, the phase diagram, plotted as a function of the an-
choring angle on the upper surface �D and the distance D / p
also is asymmetric �Fig. 4�b��. However, the topology of the
phase diagram is the same as in the case of a symmetric
substrate �see Figs. 2�b� and 3�b�, and for a more general
discussion Sec. III C below�.

We now concentrate on the most interesting �from a prac-
tical point of view� case of strong homeotropic anchoring
��D=0� at the upper homogeneous surface. Figure 5�a� dis-
plays the phase diagram for a few values of the blazing pa-
rameter h and a fixed value of the local homeotropic anchor-
ing strength on the grating surface pwH /K=2. For a fixed
cell width D / p, asymmetry �h�0� leads to a decrease of the
groove depth A / p at which there is a first order transition
between the HAN and the H phases, as compared to the
nematic liquid crystal cell with the symmetric surface grating
�h=0�. Upon increasing the groove depth A / p, the transition
line ends at a critical point �not shown in the figure�, while it
diverges as A→A0. The groove depth A0 corresponds to an
anchoring �or surface� transition between low tilt and high
tilt surface states which are the homeotropic and planar ef-
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FIG. 4. �a� The minimized free energy F��D*
,D*= p��min �dashed

line� and the effective surface free energy Fs
�ef f���̃0 ,D*= p� �solid

line� of a nematic liquid crystal confined between a flat surface with
strong anchoring and a chemically uniform blazed surface �see Fig.
1�c� and Eq. �19��. The locally homeotropic anchoring strength on
the blazed surface is pwH /K=2, the groove depth is A / p=0.27 and
the blazing parameter is h=0.2. L is the extension of the cell in the
invariant y direction and K is the isotropic elastic constant. The
effective surface free energy Fs

�ef f� �as well as F��D*
,D*= p��min� is

periodic with the period 2� but it is asymmetric with respect to

�̃0=0. �b� Phase diagram of the same system as a function of the
anchoring angle at the upper flat substrate �D and the cell width D
with the same line code as in Figs. 2 and 3. The triple point �where
the HAN+, HAN− and H phases coexist� is at �D�12° and D / p
�8, and the critical points �solid circle� are at Dcr / p�1.3, �D

�cr�

�38° and Dcr / p�1.7, �D
�cr��−24°. For clarity, only the limits of

metastability of the HAN− �1� phase and the H �2� phase �for nega-
tive �D� are shown.
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FIG. 5. �a� The phase diagram of a nematic liquid crystal con-
fined between the blazed surface �see Fig. 1�c� and Eq. �19�� with
local homeotropic anchoring and a flat surface with strong homeo-
tropic anchoring ��D=0� as a function of the groove depth A / p and
the cell width D / p. The anchoring strength on the blazed surface is
pwH /K=2. The lines correspond to different values of h and denote
first order transitions between homeotropic �H� and hybrid aligned
�HAN−� phases. For small A / p, the lines extend to D=� corre-
sponding to a first order anchoring transition between planar and
homeotropic phases. Upon increasing A / p, the first order transition
lines end at critical points which are not shown in the figure. �b�
The energy barrier at the first order transitions with the same line
code as in �a�. The lines have been obtained from the total effective
free energy �see Eq. �6��, while the diamonds correspond to the
energy barriers between the planar and homeotropic effective an-
choring which follow from considering only the surface contribu-
tion Fs

�ef f�.
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fective anchoring states, respectively, in the case h=0.
The effective free-energy method allows one to calculate

an energy barrier E between the two bistable states, which is
not feasible by the direct numerical minimization of the free-
energy functional. The results of our calculations are shown
in Fig. 5�b�. The asymmetry of the surface grating leads to a
decrease of the energy barrier. With increasing groove depth
A / p, the energy barrier decreases and eventually vanishes
upon approaching the critical point. The diamonds in Fig.
5�b� denote the energy barriers for the above-mentioned an-
choring transitions of a nematic liquid crystal in contact with
a single grating surface.

The energy barrier between two bistable states is an im-
portant quantity for the design of a zenithally bistable nem-
atic device. Too small energy barrier, as compared to kBT,
would cause spontaneous switching between the two states
because of thermal fluctuations, while enlarging the energy
barrier leads to an increase of the power consumption. Using
the calculated values of E �see Fig. 5�b�� one can estimate
the energy barrier in a real nematic liquid crystal cell. For
instance, for a cell of area 1 
m�1 
m and of width D
=5 
m, and taking the typical values K=5�10−12 N and
wH=10−5 N/m, one obtains E�37kBT for h=0.2 and A
�0.026 
m, which seems to be an acceptable value.

Another important quantity in zenithally bistable nematic
devices is the average director orientation at the grating sur-
face in the two degenerate states. The average surface direc-

tor in the HAN ��̃0
�HAN�� and H ��̃0

�H�� states is shown in Fig.
6 for the same model parameters as in Fig. 5 and for the
values of A / p and D / p corresponding to the coexistence

line. The asymmetry of the surface grating leads to a de-

crease of �̃0
�HAN� and an increase of �̃0

�H�. For a fixed value of
h, the difference between the two angles decreases with in-
creasing the groove depth A / p and finally vanishes upon
approaching the critical point �not shown in the figure�.

Hence the asymmetry of the surface grating leads to a
decrease of the groove depth at which the bistability is ob-
served, which improves optical properties �63�, and to a de-
crease of the energy barrier, which lowers the power con-
sumption of a zenithally bistable nematic device. On the
other hand, the difference between the two bistable states
also decreases which impairs optical properties of such a
device.

C. Phase diagrams for a model surface free energy

In Sec. III A we have discussed phase diagrams in the
��D ,D / p� plane which can be described in terms of the sur-
face free energy given by Eq. �14�. However, it is instructive
to consider a more general situation when the surface free
energy follows from a truncation of the Fourier expansion
given in Eq. �18�. To be able to study both symmetric and
asymmetric surfaces we assume a natural generalization of
Eq. �14�, namely

Fs��0� = �
n=0

2

�an cos�2n�0� + bn sin�2n�0�� , �20�

which reduces to Eq. �14� in the case of a symmetric surface
characterized by bn=0. The angle �0

�min� that minimizes
F�ef f���0 ;�D ,D� �see Eq. �13�� is a function of �D and D. The
derivative

� =  ��0
�min�

��D
�

D

=
KLp/D

KLp/D + Fs���0
�min��

, �21�

is the susceptibility of the system that diverges at the critical
thickness

Dcr = − KLp/min
�0

Fs���0� , �22�

and remains finite and positive for D�Dcr. From Eq. �22�
the conditions for the critical angle �0

�cr� follow as

Fs
�3���0

�cr�� = 0 and Fs
�4���0

�cr�� � 0, �23�

implying that Dcr and �0
�cr� depend only on the form of

Fs��0�.
The extremes of Fs given by Eq. �20� can be found easily

only in the case of a symmetric or antisymmetric �an=0�
surface and the same concerns the position of the critical
point. In this work, however, we are interested instead in
possible topologies of the phase diagram in the ��D ,D / p�
plane, which result from Eqs. �13� and �20�, and not in the
exact location of critical points or transition lines. To draw
schematic phase diagrams we consider Fs as a function de-
fined on the unit circle z=e2i�0. Depending on the parameters
an and bn, Fs��0� has either one minimum and one maximum
or two minima and two maxima. This conclusion applies also
to the function Fs���0�, thus there can be either one or two
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FIG. 6. The average surface director �see Eq. �7�� for the hybrid
aligned �HAN−� phase in �a� and the homeotropic �H� phase in �b�
on the lines of the first order transitions �see Fig. 5� for a nematic
liquid crystal confined between the blazed surface �see Fig. 1�c� and
Eq. �19�� with local homeotropic anchoring and a flat surface with
strong homeotropic anchoring ��D=0�. The diamonds in �a� and �b�
correspond to the two minima of the effective surface energy func-

tion Fs
�ef f���̃0�. The model parameters and the line code are the same

as in Fig. 5.
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critical points in the phase diagram �see Eqs. �22� and �23��.
In the limit of large D, there is always a first order phase
transition between two nonuniform textures corresponding to
the opposite orientations of the director at z=0. This is be-
cause F�ef f� is not a periodic function of �0 at fixed �D. To
find �D at the transition we expand Fs around its deepest
minimum �denoted �m�, which leads to the approximate free
energy:

F�ef f����D,D��min � Fs��m� +
KLp��D − �m�2

2�D + b�
, �24�

where b=KLp /Fs���m� is the extrapolation length. Since �m

and �m±� are equivalent minima of Fs, and both �m and �D
are allowed to vary in the interval �−� /2 ,� /2�, the transition
occurs at �D

�tr�=�m+� /2 if −� /2��m�0 or at �D
�tr�=�m

−� /2 if 0��m�� /2. With the above information we can
now draw schematically the phase diagram �see Fig. 7�.
Since the vertical lines at �D= ±� /2 are to be identified with
each other, the phase diagram can be considered on a cylin-
drical surface. Away from the transition lines there is a
smooth evolution from one texture to another. This means
that at fixed D it is possible to transform smoothly the T+
texture into the T− texture, i.e., without crossing the transi-
tion line, even for D�Dcr. We note that in some range of
parameters, the phase diagram for Fs with one minimum is
topologically indistinguishable from that for Fs with two
minima �Fig. 7�b��; in both cases there are two critical points
and a triple point. If Fs has two equal minima �e.g., at �0
=0 and �0= ±� /2 in the case of symmetric surface� the triple
point disappears and the first order transition lines extend to
D→�, as shown in Fig. 7�c�.

IV. SUMMARY

We have studied the phase behavior of a nematic liquid
crystal confined between a flat and a patterned substrate �Fig.
1� using the Frank-Oseen model �Eq. �4�� and the Rapini-
Papoular surface free energy �Eq. �5��. An expression for the
effective free-energy function of the system �Eq. �6�� was
derived by determining an effective surface free energy char-
acterizing the anchoring energy at the patterned surface �Eq.
�8��. Using the effective free-energy function, we have deter-
mined the phase behavior of the nematic liquid crystal con-
fined between a flat surface with strong anchoring and a
chemically patterned sinusoidal surface �Fig. 1�a��, finding
first order transitions between a homeotropic texture �H� and
hybrid aligned nematic �HAN� textures �Figs. 2�b� and 3�b��.
It is possible to have a first order phase transition even with
a monostable surface characterized by a monotonic surface

free-energy function �Fig. 2�a�, �̃0� �0,� /2��. In addition we
have performed direct minimizations of the original free-
energy functional �Eqs. �4� and �5�� on a two-dimensional
grid and found remarkably good agreement with the phase
boundaries resulting from the effective energy function
analysis �Figs. 2�b� and 3�b��. Hence quantitatively reliable
predictions of the phase behavior can be achieved using the
effective free-energy method.

Using this method, we have also studied the phase behav-
ior �Fig. 4�b�� of a nematic liquid crystal confined between a
chemically uniform, asymmetrically grooved substrate �Fig.
1�c� and Eq. �19�� with locally homeotropic anchoring and a
flat substrate with strong homeotropic anchoring, which is a
typical setup for a zenithally bistable nematic device
�46–49�. The asymmetry of the grating substrate leads to a
decrease of the groove depth at which a first order transition
between the H and HAN phases occurs �Fig. 5�a��. More-
over, we have determined the energy barrier between the two
coexisting states �Fig. 5�b��. Our calculations show that the
energy barrier decreases with increasing the asymmetry of
the grating surface but it is well above kBT for a typical
nematic liquid crystal cell. In addition, the average director
orientation at the grating surface in two bistable states has
been calculated �Fig. 6�. The difference between the two
bistable states vanishes with increasing substrate asymmetry,
which has a negative effect on the optical properties of a
zenithally bistable nematic device.

We have also generalized the model of the effective sur-
face free energy considered by Parry-Jones et al. �46,48� to
the case of asymmetric structured substrates and obtained
three possible types of the phase diagram in the plane
spanned by the orientation of the director at the homoge-
neous surface and the thickness of the nematic cell. The
asymmetry of the substrate causes only a shift of transition
lines and critical points, compared to the symmetric case, but
does not change the topology of the phase diagram. Finally,
we have verified that this model allows one to reproduce
qualitatively the phase diagram of a nematic liquid crystal
confined between a homogeneous planar substrate and an
asymmetrically grooved surface �Fig. 4�b� and Fig. 7�b��.
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FIG. 7. Schematic presentation of possible types of the phase
diagram in the ��D ,D / p� plane for the surface free energy given by
Eq. �20�. T0 and T± denote different �usually nonuniform� textures,
the thick lines correspond to first order transitions, and black circles
mark critical points. When Fs �defined on the unit circle z=e2i�0�
has one minimum and one maximum the phase diagram can be
either of type �a� or �b�. When Fs has two minima and two maxima
the phase diagram is of type �b� unless the minima are of equal
depth, in which case it is of type �c�. Note that the lines �D

= ±� /2 are identified with each other and the phase diagram can be
considered as being on a cylindrical surface.
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